+7 495 665 08 52

+7 495 508 19 83

Какие бывают катализаторы


Какие бывают катализаторы в машине

Большинство неопытных автовладельцев узнают о наличии нейтрализатора только в сервисном центре, когда им сообщают, что эта деталь выхлопной системы неисправна. Однако такие устройства играют очень важную роль в управлении транспортным средством и защите окружающей среды. Сегодня мы расскажем, зачем нужны катализаторы в машине, из чего они состоят и почему так дорого стоят.

Принцип действия автомобильного катализатора

Современные производители регулярно улучшают качество автопродукции, изготавливая запчасти в соответствии с экологическими требованиями. Нейтрализатор, впервые выпущенный в конце 70-х годов прошлого столетия, стал настоящей находкой. Несмотря на простоту конструкции, эта деталь выполняет важнейшую задачу – очищение отработанных выхлопных газов от токсичных компонентов, негативно влияющих на состояние окружающей среды и здоровье человека.

Устройство представляет элемент из металла и керамики, заключенный в прочный стальной корпус, который позволяет избежать преждевременного износа конструкции, защищает нейтрализатор от ударов и перегрева. Внутренний блок имеет ячеистую структуру, обеспечивающую большую площадь соприкосновения выхлопов с рабочей поверхностью. Фильтрация газов выполняется благодаря покрытию из драгоценных металлов, обладающих каталитическими свойствами – ячейки катализатора обработаны тонким слоем родия, палладия и платины. Вступая в контакт с выхлопами, эти элементы преобразуют токсичные азотные оксиды, углеводород и другие вредные вещества в безопасные для живых организмов водяной пар, азот, углекислый газ. Кроме того, драгоценное напыление уменьшает образование мельчайших частиц сажи.

Что делать, если катализатор в машине сломался

Запчасти рассчитаны на пробег 50 000 – 100 000 километров, однако, как показывает практика, они редко «доживают» до таких показателей. К износу катализатора приводят различные факторы:

  • Использование низкокачественного бензина.
  • Частая езда на холостом ходу.
  • Эксплуатация авто в условиях бездорожья – особенно от ударов и тряски «страдают» хрупкие керамические изделия.
  • Попадание масел, антифриза и других жидкостей в камеру сгорания.
  • Проблемы с мотором.

Даже после выхода из строя автокатализаторы не теряют ценности – отработанные изделия можно выгодно продать в пункт приема металлолома. Дело в том, что родий, платина и палладий относятся к группе редкоземельных металлов, которые практически не встречаются в природе в чистом виде. Сейчас основным источником этих дорогостоящих элементов служат нейтрализаторы. Особенно высоко оцениваются платиносодержащие детали, которые чаще всего устанавливаются на иномарках премиум-класса и автомобилях с дизельным двигателем.

Понравилась информация? Поделись с друзьями

Что такое катализатор? (с рисунками)

Катализатор - это любое вещество, которое ускоряет химическую реакцию. Это может быть органический, синтетический или металлический. Процесс, посредством которого это вещество ускоряет или замедляет реакцию, называется катализом.

Ученые часто добавляют катализатор в химический раствор, чтобы вызвать реакцию.

Для любого процесса требуется энергия, известная как энергия активации. Без помощи катализатора количество энергии, необходимой для зажигания конкретной реакции, велико. Когда он присутствует, энергия активации снижается, что делает реакцию более эффективной. Вещество обычно работает, изменяя структуру молекулы или связываясь с молекулами реагентов, заставляя их объединяться, реагировать и выделять продукт или энергию. Например, катализатор необходим для соединения кислорода и водорода и образования воды.

Катализаторы важны как в лаборатории, так и на производстве и в промышленности.

Без помощи катализатора химические реакции могут никогда не произойти или занять значительно более длительный период времени для реакции.Когда происходит химическая реакция, сам катализатор не изменяется и не является частью конечного результата. В большинстве случаев его можно использовать снова и снова в последующих реакциях.

Иногда вместо ускорения реакции катализатор работает, чтобы замедлить реакцию, которая обычно не происходит или происходит очень медленно.Этот тип вещества является отрицательным катализатором, который также упоминается как ингибитор. Ингибиторы важны в медицине, где они имеют решающее значение для лечения психических заболеваний, высокого кровяного давления, рака и множества других проблем со здоровьем.

Катализатор используется в двух типах условий: химическом или биохимическом.Наиболее распространенными в биохимических реакциях являются ферменты. Ферменты - это узкоспециализированные белки, которые ускоряют специфические химические реакции. Они делают жизнь возможной. Например, фермент, содержащийся в слюне, расщепляет пищу для пищеварения при контакте. Без этого людям потребовались бы недели, чтобы переварить нашу пищу.

Катализаторы

также важны как в лаборатории, так и на производстве и в промышленности.Одним из самых известных является каталитический нейтрализатор, который помогает предотвратить выбросы автомобилей и повысить эффективность потребления топлива. Удобрения также являются катализаторами, ускоряющими рост растений.

Катализаторы ускоряют химическую реакцию. ,

Определение катализатора - Химический словарь

Что такое катализатор?

Катализатор - это вещество, которое ускоряет химическую реакцию, но не расходуется на реакцию; следовательно, катализатор можно извлечь химически без изменений в конце реакции, которую он использовал для ускорения, или катализировать .


Обсуждение

Чтобы химические вещества реагировали, их связи должны быть перегруппированы, поскольку связи в продуктах отличаются от связей в реагентах.Самый медленный шаг в перегруппировке связей приводит к тому, что называется переходным состоянием - химическое вещество, которое не является ни реагентом, ни продуктом, но является промежуточным звеном между ними.

Реактив

⇄ Переходное состояние ⇄ Продукт

Энергия требуется для формирования переходного состояния. Эта энергия называется энергией активации , или , E , , . Чтение диаграммы ниже слева направо показывает ход реакции, когда реагенты проходят через переходное состояние, превращаясь в продукты.

Победа над барьером

Энергия активации может рассматриваться как барьер для химической реакции, препятствие, которое необходимо преодолеть. Если барьер высокий, немногие молекулы имеют достаточную кинетическую энергию для столкновения, формирования переходного состояния и пересечения барьера. Реактивы с энергией ниже, чем E a , не могут проходить через переходное состояние, чтобы реагировать и становиться продуктами.

Катализатор работает, обеспечивая другой путь реакции с более низким Е и .Катализаторы снижают энергетический барьер. Другой маршрут позволяет перегруппировке связей, необходимой для превращения реагентов в продукты, проходить легче, с меньшим потреблением энергии. В любой заданный интервал времени присутствие катализатора позволяет большей части реагентов собирать достаточную энергию для прохождения через переходное состояние и превращения в продукты.

Пример 1. Процесс Хабера
Процесс Хабера, который используется для получения аммиака из водорода и азота, катализируется железом, что обеспечивает атомные центры, на которых связи реагента могут легче перестраиваться для образования переходного состояния.

N 2 (газ) + 3H 2 (газ) N 2NH 3 (газ)

Пример 2. Ферменты
В нашем организме и других живых организмах ферменты используются для ускорения биохимических реакций. Фермент является типом катализатора. Сложная жизнь была бы невозможна без ферментов, чтобы позволить реакциям протекать с подходящей скоростью. Формы ферментов вместе с расположениями на ферменте, которые связываются с реагентами, обеспечивают альтернативный путь реакции, позволяя определенным молекулам объединяться, чтобы сформировать переходное состояние с пониженным энергетическим барьером активации.

На приведенной ниже схеме фермент с длинной цепью обеспечивает сайты для молекул реагента, которые собираются вместе, чтобы сформировать переходное состояние с низкой энергией активации.

Катализаторы не могут сместить положение химического равновесия - прямые и обратные реакции ускоряются, так что константа равновесия K eq не изменяется. Однако, удаляя продукты из реакционной смеси по мере их образования, общая скорость образования продукта на практике может быть увеличена.

,

видов катализа

Это имеет катализатор в той же фазе, что и реагенты. Обычно все будет присутствовать в виде газа или содержаться в одной жидкой фазе. Примеры содержат один из них. , ,

Примеры гомогенного катализа

Реакция между персульфат-ионами и йодид-ионами

Это реакция решения, которую вы можете встретить только в контексте катализа, но это прекрасный пример!

Персульфат-ионы (пероксодисульфат-ионы), S 2 O 8 2- , являются очень сильными окислителями.Йодид-ионы очень легко окисляются до йода. И все же реакция между ними в растворе в воде очень медленная.

Если вы посмотрите на уравнение, легко понять, почему это так:

Реакция нуждается в столкновении двух отрицательных ионов. Отвращение будет серьезно мешать этому!

Каталитическая реакция полностью устраняет эту проблему. Катализатором могут быть ионы железа (II) или железа (III), которые добавляются в один и тот же раствор.Это еще один хороший пример использования соединений переходных металлов в качестве катализаторов из-за их способности изменять степень окисления.

Ради аргумента, мы возьмем катализатор в качестве ионов железа (II). Как вы вскоре увидите, на самом деле не имеет значения, используете ли вы ионы железа (II) или железа (III).

Ионы персульфата окисляют ионы железа (II) до ионов железа (III). При этом ионы персульфата восстанавливаются до ионов сульфата.

Ионы железа (III) являются достаточно сильными окислителями для окисления йодид-ионов в йод.В процессе они снова восстанавливаются до ионов железа (II).

Обе эти отдельные стадии в общей реакции включают столкновение между положительными и отрицательными ионами. Это будет гораздо более вероятным, чем столкновение двух отрицательных ионов в некатализированной реакции.

Что произойдет, если вы будете использовать ионы железа (III) в качестве катализатора вместо ионов железа (II)? Реакции просто происходят в другом порядке.

 

Разрушение атмосферного озона

Это хороший пример гомогенного катализа, где все присутствует в виде газа.

Озон, O 3 , постоянно образуется и снова разрушается в высокой атмосфере под действием ультрафиолетового света. Обычные молекулы кислорода поглощают ультрафиолетовый свет и распадаются на отдельные атомы кислорода. Они имеют неспаренные электроны и известны как свободных радикалов . Они очень реактивные.

Кислородные радикалы могут затем соединяться с обычными молекулами кислорода с образованием озона.

Озон также можно снова разделить на обычный кислород и кислородный радикал, поглощая ультрафиолетовый свет.

Это образование и разрушение озона происходит постоянно. Взятые вместе, эти реакции останавливают много вредного ультрафиолетового излучения, проникающего в атмосферу и достигающего поверхности Земли.

Каталитическая реакция, в которой мы заинтересованы, разрушает озон и, таким образом, останавливает его поглощение ультрафиолета.

Например, хлорфторуглероды (ХФУ), такие как CF 2 Cl 2 , широко использовались в аэрозолях и в качестве хладагентов.Их медленный распад в атмосфере производит атомы хлора - свободные радикалы хлора. Они катализируют разрушение озона.

Это происходит в два этапа. В первом случае озон распадается и образуется новый свободный радикал.

Катализатор радикала хлора регенерируется второй реакцией. Это может происходить двумя способами в зависимости от того, попадает ли радикал ClO в молекулу озона или кислородный радикал.

Если он попадает в кислородный радикал (полученный в результате одной из реакций, которые мы рассмотрели ранее):

Или если он попадет в молекулу озона:

Поскольку радикал хлора продолжает восстанавливаться, каждый из них может разрушить тысячи молекул озона.

,

Смотрите также